

Geographic Variation in the Utilization of Medical Devices Preliminary results from Germany & Italy

Meilin Möllenkamp, Stefan Rabbe, Jonas Schreyögg & COMED project team

Hamburg Center for Health Economics (HCHE), University of Hamburg

Funded by European Union's Horizon 2020 research and innovation program (No. 779306)

Horizon 2020 European Union funding for Research & Innovation

1. Background

- 2. Data and Methods
- 3. Preliminary Results
- 4. Discussion

Background and Research Question

Demand and supply-side driven variation in healthcare utilization

- A big part of geographic variation is likely to be driven by **demand-side factors** (e.g., Finkelstein et al. 2016; Song et al. 2010; Yip 1998; Sheiner 2014)
- but, there are also strong indications for **supply-driven** differences (e.g., Cutler et al. 2019; Finkelstein et al. 2016; Chandra et al. 2011; Chassin et al. 1987)

Within- and between country variation in healthcare utilization

- Evidence for geographic variation **between countries** (e.g., OECD 2014)
- and between regions within countries (e.g., Skinner 2012, Corallo et al. 2014)

Research Question:

Is there demand- and supply-side driven geographic variation in the use of medical devices within and between European countries?

Previous Research

Previous analyses of geographic variation in healthcare utilization

- Within-country variation variation across disease groups (e.g., Dartmouth Atlas of Health Care; Judge et al. 2009)
- Between-country variation using macro-level data in single disease groups
 - Cardiac Implantable Electrical Device Implant Rates in 5 European countries (Torbica et al. 2017)
 - Transcatheter Aortic Valve Replacement in 11 European countries (Mylotte et al. 2013)
- Within- and between-country variation across disease groups using aggregated micro-level data
 - Stroke, AMI and hip fracture in 5 European countries (Häkkinen et al. 2015; Hejink et al. 2015)

So far, variation within and between countries has not been analysed on **patient**, **provider and regional level** across disease/procedure combinations focusing on medical device use

PUSHING THE BOUNDARIES OF COST AND OUTCOME ANALYSIS OF MEDICAL TECHNOLOGIES

- 1. Background
- 2. Data and Methods
- 3. Preliminary Results
- 4. Discussion

Data

Patient-level data, containing each inpatient treatment for the years 2012-2015

Case Studies

Diagnosis		Procedure	Medical device	
1	Femur fracture	Reposition of femur fracture	e.g., Bone screws	
2	ST-elevation myocardial infarction (STEMI)	Percutaneous transluminal angioplasty (PTA)	Heart catheter (e.g., balloon catheter, catheter with diamond-coated rotating milling head)	
3	ST-elevation myocardial infarction (STEMI)	Stenting	Stents (drug-eluting/non-drug eluting stents)	
4	Malign neoplasm of the prostate	Radical prostatectomy	Laparoscope	
5	Benign neoplasm of the uterus	Hysterectomy	Laparoscope	

Methods

Hypothesis:

Individual characteristics, hospital characteristics, and county characteristics influence whether a patient with a certain diagnosis receives a certain treatment.

Three-level random intercept logistic regression model with fixed effects for years (2012-2015):

 $y_{cjk} = \beta_0 + \beta_1 Pat_{cjk} + \beta_2 Hosp_{jk} + \beta_3 NUTS3_k + u_{jk} + u_k + \eta year_{cjk} + \varepsilon_{ijk}$

with c: case level; j: hospital level; k: county level

 β_0 = mean of the population

 y_{ijk} = log of the odds of a patient with a certain diagnosis receiving a certain treatment (y=1)

 Pat_{ijk} = patient-level covariates

 $Hosp_{ik}$ = hospital-level covariates

 $NUTS3_k$ = NUTS3-level covariates

 u_{ik} = a hospital's deviation from its county's mean

 u_k = a NUTS3 region's deviation from the overall mean of y

 $year_{cik}$ = fixed effects for years

 ε_{cik} = patient-level residual

Multilevel Model: Independent Variables

PUSHING THE BOUNDARIES OF COST AND OUTCOME ANALYSIS OF MEDICAL TECHNOLOGIES

- 1. Background
- 2. Data and Methods
- 3. Preliminary Results
- 4. Discussion

Descriptive Statistics – Stent utilization

		Ger	many		taly
Level	Variable	Mean	SD	Mean	SD
Patient level	Stent utilization	0.766	0.417	0.709	0.454
	Age	64.560	13.050	64.936	12.674
	Gender	0.716	0.451	0.247	0.431
	Length of Stay	8.435	8.413	7.791	6.894
Hospital level	Hospital type	2.335	0.757	0.131	0.337
	Full-inpatient cases	32,169.000	29,410	18,111.81	10,875.83
	Day patient cases	1,169.000	2,319	5,483.621	5,434.095
	Outpatient cases	83,778.000	161,764	-	-
	Nurses per bed	0.670	0.239	-	-
	Doctors per bed	0.349	0.148	-	-
	Teaching hospital	0.847	0.360	0.188	0.391
NUTS3 level	Secondary education	27.27	5.352	8.877	1.722
	School leavers	5.862	2.327	15.224	4.586
	Life expectancy	80.430	1.060	82.242	0.881
	Unemployment rate	6.893	3.006	12.384	5.708
	Share of voters	70.420	3.908	75.323	6.228
	Population density	208.900	233.9	521.727	668.789
	Share of foreigners	8.857	5.328	8.144	3.770
	Median income	3,016	0.465	1,788.604	195.562
	General practioners	158.500	46.880	89.502	11.013
	Internal specialists	24.040	8.571	-	-
	Inhabitants under 6	5.101	0.464	5.441	0.494
	Inhabitants between 50 and 65	21.950	2.324	19.831	0.746
	Inhabitants between 65 and 75	10.580	1.149	10.694	1.041
	Inhabitants older than 75	10.530	1.396	10.789	1.742

PUSHING THE BOUNDARIES OF COST AND OUTCOME ANALYSIS OF MEDICAL TECHNOLOGIES

Utilization rates for Drug-Eluting Stents (avg. 2012-2015)

USHING THE BOUNDARIES OF COST AND OUTCOME ANALYSIS OF MEDICAL TECHNOLOGIES

Preliminary Results – Stent utilization

Three-level random intercept logistic regression model with fixed effects for years

Utilization of drug-eluting stents Variables	Germany Odds Ratio
 Patient level variables 	
 Hospital level variables 	
 NUTS3 level variables 	
NUTS3 level variance	0.273***
	(0.079)
Hospital level variance	1.444 ***
	(0.122)
ICC NUTS3	5.46%
ICC hospital	34.30%
Number of observations	215,165
Number of hospitals included	952
Number of NUTS3 regions included	378
Standard errors in parentheses; *** p<0.01, **	p<0.05, * p<0.1

Preliminary Results – Stent utilization

Utilization of drug-eluting stents	Germany	Italy
Variables	Odds Ratio	Odds Ratio
Patient level variables		
 Hospital level variables 		
 NUTS3 level variables 		
Hospital level variance	1.752***	4.847***
·	(0.124)	(0.501)
ICC hospital	34.75%	59.57%
Number of observations	215,165	127,601
Number of hospitals included	952	475
Standard errors in parentheses; ***	[*] p<0.01, ** p<0.05, * p<0	0.1

Two-level random intercept logistic regression model with fixed effects for years

- 1. Background
- 2. Data and Methods
- 3. Preliminary Results
- 4. Discussion

Discussion

First Insights

- First insights into variation within and between Germany and Italy on patient, provider and regional level for the utilization of drug-eluting stents in patients with a STEMI diagnosis
- For the case of drug-eluting stents supply-driven differences appear to be higher in Italy than in Germany

Limitations

- Different procedure code systems across countries impede comparability
- Cannot account for differences in coding practices between countries
- Data pooling not possible due to data protection restrictions

Outlook & Implications

Outlook

- Inclusion of further control variables (e.g., hospital competition)
- Extension of analyses to further case studies (i.e., disease/procedure combinations)
 - First results for Germany indicate that variation in utilization differs between medical devices
- Inclusion of further European countries (i.e., Switzerland, Hungary and the Netherlands)

Implications

- Contribution to the identification of determinants of regional variation in the utilization of medical devices within and between European countries
- Indications of potential structural deficits and inefficiencies in health care systems (e.g., planning and coordination deficits, misplaced incentives or poor patient involvement)

Thank you!

Meilin Möllenkamp Stefan Rabbe Jonas Schreyögg Hamburg Center for Health Economics Universität Hamburg Esplanade 36 · 20354 Hamburg

meilin.moellenkamp@uni-hamburg.de stefan.rabbe@uni-hamburg.de jonas.schreyoegg@uni-hamburg.de

References

Chandra, A., Cutler, D. & Song, Z. (2011). Who ordered that? The economics of treatment choices in medical care. In Handbook of health economics (Vol. 2, pp. 397-432). Elsevier.

Chassin, M. R., Kosecoff, J., Park, R. E., Winslow, C. M., Kahn, K. L., Merrick, N. J., Keesey, J., Fink, A., Solomon, D. H. & Brook, R. H. (1987). Does inappropriate use explain geographic variations in the use of health care services?: A study of three procedures. Jama, 258(18), 2533-2537.

Corallo, A. N., Croxford, R., Goodman, D. C., Bryan, E. L., Srivastava, D. & Stukel, T. A. (2014). A systematic review of medical practice variation in OECD countries. Health Policy, 114(1), 5-14.

Cutler, D., Skinner, J. S., Stern, A. D. & Wennberg, D. (2019). Physician beliefs and patient preferences: a new look at regional variation in health care spending. *American Economic Journal: Economic Policy*, *11*(1), 192-221.

Dartmouth Atlas of Health Care; 2012. Available from:www.dartmouthatlas.org.

Finkelstein, A., Gentzkow, M. & Williams, H. (2016). Sources of geographic variation in health care: Evidence from patient migration. The quarterly journal of economics, 131(4), 1681-1726.

Häkkinen, U., Rosenqvist, G., Iversen, T., Rehnberg, C., Seppälä, T. T. & EuroHOPE study group. (2015). Outcome, use of resources and their relationship in the treatment of AMI, stroke and hip fracture at European hospitals. *Health economics*, 24, 116-139.

Heijink, R., Engelfriet, P., Rehnberg, C., Kittelsen, S. A., Häkkinen, U. & EuroHOPE study group. (2015). A window on geographic variation in health care: insights from EuroHOPE. Health economics, 24, 164-177.

Judge, A., Welton, N. J., Sandhu, J., & Ben-Shlomo, Y. (2009). Geographical variation in the provision of elective primary hip and knee replacement: the role of socio-demographic, hospital and distance variables. Journal of Public Health, 31(3), 413-422.

Mylotte, D., Osnabrugge, R. L. J., Windecker, S., Lefèvre, T., de Jaegere, P., Jeger, R., Wenaweser, P., Maisano, F., Moat, N., Søndergaard, L. and others (2013). Transcatheter aortic valve replacement in Europe: adoption trends and factors influencing device utilization. *Journal of the American College of Cardiology*, 62(3), 210-219.

OECD (2014). Geographic Variation in Health Care: What Do We Know and What Can be Done to Improve Health System Performance? Focus on health. OECD Health Policy Studies, OECD Publishing: Paris.

Sheiner, L. (2014). Why the geographic variation in health care spending cannot tell us much about the efficiency or quality of our health care system. Brookings Papers on Economic Activity, 2014(2), 1-72.

Skinner, J. (2012). Causes and Consequences of Regional Variations in Health Care. In: Pauly, M.V., McGuire, T.G., and P.P. Barros, editors, Handbook of Health Economics, 2: 45–93. Elsevier: Oxford.

Song, Y., Skinner, J., Bynum, J., Sutherland, J., Wennberg, J. E. & Fisher, E. S. (2010). Regional variations in diagnostic practices. New England Journal of Medicine, 363(1), 45-53.

Torbica, A., Banks, H., Valzania, C., Boriani, G. & Fattore, G. (2017). Investigating regional variation of cardiac implantable electrical device implant rates in European healthcare systems: what drives differences?. *Health economics*, 26, 30-45.

Wennberg, J., Birkmeyer, J. D., Birkmeyer, N. J., Lucas, F. L., Malenka, D. J., & McGrath, P. D. (1999). The Dartmouth Atlas of Cardiovascular Health Care 1999. Chicago: Dartmouth Medical School and American Hospital Association.

Yip, W. (1998). Physician responses to medical fee reductions: Changes in the volume and intensity of supply of Coronary Artery Bypass Graft (CABG) surgeries in the Medicare and private sectors. *Journal of health economics*, 17(6), 675-699.